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1. Introductigﬁ

We consider the general linear model
€1.1) ¥ S T 0(1,;3)Li. T. ™ C. B (e TR

where E” is an unknown (p x 1) vector, the (p =~ 1) vectors c; arce known, the
error terms Li are independent and identicaliy distributed (i.i.d.) with commor
distriution function F, and ‘(:1,0) expresses the possible heteroscedasticity

in the model, with
(1.2) g(t,6) =1 +« 0 a(t) + o(0) as 0 > 0

Bickel (1978), generalizing work of Anscombe (1961), defines robust tests for
heteroscedasticity, which in the present context is a test of Hn: 0 = 0: the iden
is to replace aspects of the usual informal cxamination of residuals by formal
statistical inference about the probability structure of the data. If€ iti} are

the fitted values (from least squares or possibly a robust regression method

(Huber (1973)(1977))) and b is an even function, Bickel's robust test statistic is

n
(1.3) My iil (u(ti) - al(l))h(ri)/'% 5
where
(1.4) r. =Y., - t, = residual,
i 1 i
- 2 S Bk 2 '
(1.5 Gy = ¥ (a(t,) - a.(t))° (n=p) y e « b.(2))° ,
) e 1 gt 1
l:l ]21 v
and for any function g,
- n -\
g.(x) =n"" F p(x) 2
’ oo 1 \
i=1 ;




Bickel makes the following assumption:
(1.6) b is bounded and has two continuous, bounded derivatives.

Under (1.6) and other assumptions (see Theorem 1 below), Bickel obtains the

asymptotic distribution of Ay under HO: 7 = 0 and contiguous alternatives,
s |

results are obtained for the case p°/n ~ 0

One of the most attractive choices of b (well motivated in Bickel's Section

3) 1is Huber's flm_C_tj_Q_n__s(1&1_;1_(;31:

(1.7) b(x) = x x| < k

This choice of b does not satisfy (1.6) <o that Bickel's Theorem 3.1 Joes not
apply. He states that the strong smoothness condition (1.6) is "unsatisfactory"
and obtains results tor (1.7) only when p is hounded and fitting is by least
squares.

In this note we show by a simple medification of Bickel's proofs (using
techniques of Carroll (1978)), that results for \b can be nbtained for b given
by (1.7) even when pJ/n » 0 and fitting is by robust estimates on least squares.

This result is given in Section 2. In Section 3 we note extensions which obtain

scale invariance by robust e¢stimation with scale cstimated by Huber's Proposal 2.

2. Main Results
Wherc possible we adopt Bickel's notation. Without loss of gcnerality we

assume n focer e, = 1. 1o provide a frame of reference we state:

IﬁgO£E;L3 (Bickel (1978)) Suppose the following hold:

£2.13 max lTi' N,




(2.2) A Bl - e (nYt 2 W o e,

(2.3) Bn’| < M,
(2.4) I is symmetric about zero,
(2.5) Ml < Jo(¥) < M where for F' = f(absolutely contiruous) ,
J(F) = [ (x f'(x)/f(x) + 1)° f(x)dx,
: : =%
(2.6) \ur(h(tl); > M >0
(2.7) The function a is twice boundedly and continuously differentiable.
P g - Eie%, SN SRS
(2.8) iy di 8 T & Ji (p(p,,
£2.9) b(x) = b(-x),
(2.10) b 15> bounded and satisfies (1.6),
2
(2.11) p/n~+0.
Then
(2:12) P”-, = 2z} =1 - ¢(z - /\‘)) + o(1) ,
where
% 20 o4
(2.13) bpum) = L} (alt,) - & (x))°]" E e,b'(e,) [Var(ble,)})] ?
% i . 1 1 1

Jur generalization of Theorem 1 to incorporate such functions »s 1.7) is

Theorem 2. Suppose (2.1)-(2.9) and the following hold:

(2.14) b is bounded, Lipschitz of order onc, and has two boundcd continuous
derivatives except possibly at a finite number of points, which we

take as :c.



4
(2.15) P 0
Then (2.12) holds. (Assumption (2.8) is discussed in the next section. )

Proof of Theorem 2. ‘lue key results in Bickel's proof are (A34)-(A37) with

E 3
n

The 1/n (i = 3)
= -1/n (ST

Because b is bounded and Lipschitz of order onc, (AZ4)-(A36) follow cxactly

as given by Pickel. He usecs (A37) to prove

ot (58
(2.16) Rt dalrgd - & (2))b(x.)
i=1
n
= n .z (3(11) - u_(1),h(ri)
i=1
; n
+ e ', ' alr L Y
nYE Db () Z (a(r;) - a (1))d; + 0, (1),
i=1]
where di t, - 1 Instead of proving (A37) we will prove (2.16) directly.

As seen in Bickel's (Ai1)-(A47), (2.16) is verified by proving either (A48) (o5
Bickel has done) or
) g 2B p
(217 a A =a? §F J w. . 8l (br) - ble,) *d, Blc)) >0 .
izl j-1 1] 1 J 3 J 3

We will prove (2.17). Note that in Bickel's proofs of (A41)-(A47) the assuamption

]
1
=8

(1.6 1s not needed; the weaker assumption (2.14) suffices. Sincc rj

with T being the indicatoir tunction, rewrite

{2.18) An = ?i TJ wlj n((i)(h(sj—dj) - hflj) ‘ dj b'frj))
X {1{<c + a € ¢ 1“) v Fle = e bj € . 1n]
+ I(-c - L. »J < g ¥ nn) + l(’j ot . nn) + l('j,i -Cc - ﬂn)}
X \Hl i AnZ : Anﬁ Ant : \nﬂ ’




where a  + 0 will be speccified later. We also write A = 7. 7. K..(n). We can
n n 1 J 1} \
further write
Lfege gl d ane ' P :
(2.19) A, =% E K..(n){ 3 1 (-cra_<q,<c-n ) = AL 4 A(2)
l - . . ‘ !
B L B RETTPI ] S TR nd e
P '
As in Bickel's (A48), since b is differentiable on (-¢,¢),
(1) S i o
/ = 5 ( = )
|A 1 | (p(“ ’i) (p(p)
Note that if ~-¢ ¢+ 4 < ¢g. <c¢c -a_ amd |t, - d.] ~ ¢ then id.l Al “Then. by {2.]
n J n i | j n N
since b 1s Lipschitz and Wii = 0.5 - 1 /fnl
(2) 7 ,

A ! < M b{*“) - e + . t.' 4\ t =0 g < < — | e -J’ S o
1A'l < jgl I €;-d; b(e;) + d; b'{ey) j 8y < €5 <€ -afemdi) >
rz\ n =1 n :
<M .} I{ld.] >a ) <M € F A2 €} I{ld.| >a.})?=0 (p/a)

=L el e iteds & 3=1 gl

1 i‘.‘ | = \’\ a ). Sim ki f = () . =0 )
thus |A | I‘(p/xn) Similarly, |\n4| (p(p,ln), I\nS’ (p(p/&n.

Further, by (2.1) and since b is Lipschitz,

o 30 !
2.20) Ao | <8 y I, i N ba ~fallidie Y 2 e
( I'nl‘ <M lj) (,j e - a2 < j-i ¢+ a )

A similar bound holds for Azl - Since by (2.5) I is Lipschitz in neigh orhoods
1

of *c, Lemma 1 of Carroll (1978) shows
(2.21) 2 e =8 <. < @b un} = Op(mnx(lng f, N(F{E * an) - F(c - al))
Provided na > log n, (2.20) and (2.21) yive

A

1,
! = ) 3 2 !/ - Y y B
nal \p'(n '“n) ) '\nlf (p((n ;an) )

This yields
i s .o by il
2edd I pp‘(pﬂn). + 0 (p/a_))

1f we tuke Jn « f , (2.15) and [2.22) vield




meA =02},
n p
completing the pruof. 0
3. Extensions
A. Scale invariance
The test statistic A, is not scale invariant To obtain such invariance,

o

one would rewrite the model (1.1)-(1.2) so that (r,8) = (1 + a(1)7 + f{w})/do,

whore UO is a scale paramcter consistently estimated (when 6 = 0) by a sc¢al«

estimate @ (provided by least squares or luber's Propesal 2 for robust regression;.

To obtain scale invariauce, Bickel suggests replacing h(ri) by b(ri/q). The
statements and proofs of Theorems 1 and 2 must be modified for this new test

statistic which we denote Ab(g\. An analogue of Theorem 2 is

Theorem 3. Suppe-e the conditions of Theorem 2 hold and, in addition,

1

€3.1) n* (3 = 003 = OP(I).
" L
(3.2) h!b'(tl)(l; Senil
. A TR et =
(3.3 E{b ((l)rl}

Then (2.12) holds for Ab(:).

Renark. Assumption (7.1) i the subject of part B of this section. Assumptions

(3.2) and (3.3) hold if b 15 constant outside an interval (as is (1.7)).

Sketch of the proot of Theorem 3. We need to verify substitutes for Bickel's
{A35) and (A37) when h(rl) 1s replaced by h(ri/ﬁ). b(oi) is replaced by b(Ll/cﬂ)

1
and the remainder terms are (respectively) Op((np)‘ﬁ and Cp(p). To prove the




substitute for (A35) one must show thut

~ A~ & 1
: - t a) b ) = 4
(3.4 1 wxj b(ri/d) b(rj/u) L wij J(fi/ ) b )/ J Op((np) )
By B 3 \ ; X P :
(3.5) & Wy b(e;/0) b( j/ﬂ) By b(c /o) ble /o) = OP(.nr‘ )

Jsing the special form of wij’ (3.4) follows from (2.8) and the fact that b is
bounded and Lipschitz; (3.5) i< a consequence of (3.1) and (3.2). Statement (A7
is more complex. The analogue of (A42)-(A45) is to show

LA e Sl R R

for which (using Bickel's proof) it suffices to show

3 "\ y "’l.‘ " X \’ i t /"' = )
(2.6) j[i wij a'tly) dl(b(rj/l) b( i o)) (p(p)
We rewrite (3.6) as
3 7 ' & = v ' .""' - 3 ) ’( «‘ = /\ )
3.1 lfj “ij 8 (14, (‘J b (c), o) - E g b€ /0g) (1o - 1/0,)
I ' ) ( 3) - bt = /G - ¢ £ blfe. /o
iLj wij a (Txldl (b EJ/J) b (j/uoﬁ (1/0 l/Jo) j LS : N
5 Bln ' BZn
Thet B]Y B OP(p) follows trom using the Schwarz inequality, the boundcdness of
a, and then applying (3.1)and (3.2). That B, = Cp(P) is complicated notationally
but 1. a consequence of a weakened version of Lemma 2 of Carroll (1978). ihis
verifies (3.6).
The analogue of (A4%) is to show that
3 ¥ ‘ s 2 3 - s N ', =
(3.8) 5 wij 1(\1)(h(rj/y) b J/ “)‘ (p(p)

- T SRS SRS




Al

First note that (3.1) and the proof of Theorem 2 can be used to show that

) - - /0 W (r../0) + (4 /Db (¢, /0)) =
(3.9) 1Lj wij J(‘i)‘h(')' ) b i/ ; 3 ( j/ )) Op(p]

To verify (3.8) we must show that the ditrerence between (3.8) and (3.9) is

JP(P‘; this 1s a consequence of the following:

(2.10) .Z. wi) d(~i)(b(,J/u] 2 ng(i/xq,; - pp(p)
1,)
JL
i e i Pl AY = Bt . = (oD
(3.11) 2 dij a(,l‘ = (b (,J, ) ) (sj/r”)) Lp(}‘
1,)
- ¥ — r e fo O = -Yig. ¥ =0 iy
€3.12) izj i a(r.) dj b (_j,xo)(l/v /9, kp(p)

Equations (3.11) and (3.12) follow by applying the Schwarz inequaliiy, (2.8),

(2.14), (3.1) and (3.3). We can rewrite (3.10) as

(3.13) ) w, d(fi)(h(hj‘~§ - bley/ag) - (/G - 1/og)e, b'(e./0.))

- 4 : ; } ¥ 1 = ¢ (] ¢ !/~ { 3 v / = 3 *
’ i iy BETIE, j”o) SR U ) = B, ¢ B

the last step following since T wi) a(1i) = 0, That R;l E Op(p) follows us in

the proof of Theorem 2, while B;ﬂ = OP(p) follows from (3.1) and the Chebhychev

1

inequality. t]
B. On ussumn&iqn (Z.R). Huber's Proposal 2 for robust regression is to solve

\ ( Q@ . ~ -
(3.12) vy, - ¢ B)/ole, =0

n -
(3.13) LoovTy - B/ = 5= E YT,
§

the last expectation takcn wnder the standard normal distribution function. !uber

(1973) shows (2.8) under the following conditions:




{3.14) v 1s odd and non-decreasing,
» has two bounded continuous derivatives,
o = 1 and only (3.12) is solved,
yp » 0, where y is the maximum diagonal element of th~ projection
P ) ey : ; . 20
matrix C(CC) €' = €E" = T (since y=p/n, p /n =V

1S necessary.)

The above conditions are very restrictive in assuming o known, and Huber's functi
(h(x) = max(-k, min(k,x))) does not satisfy the smoothness condition.

Carrcll and Ruppert (1979) have generalized Huber's result by means of the

techniques used in the proot of Theorem 2. They utilize the full system

{(3.12)-(3.13) and assume only that  satisfies (2.14), which is true for all
functions used in practice. The price paid is a stronger condition on the growth

rate of p; they require that for some sequence a » 0, both Y‘/n2 » 0 and
P 2 { { n I n

. . L - . i

nya - 0. When the design is balanced ( y = p/n), then . =P thta) for any
PR : 4+ 2¢

£ > 0 sutfices, but that rcquires p /0 > 05

C. Smoothness of F. Condition (2.5) 1s rather strong. Ruppert and Carroll (1979

show by entirely different methods that when p i1s fixed and b satisfies (2.14), (2.

can be relaxed by requiring only that F is Lipsch .z of order one in neighborhec i

of *¢.

%
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